1. International Diabetes Federation. IDF diabetes atlas. 11th ed. Brussels: International Diabetes Federation; 2025. [
Link]
2. GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402(10397):203-34. [
Link] [
DOI:10.1016/S0140-6736(23)01301-6]
3. Parker ED, Lin J, Mahoney T, Ume N, Yang G, Gabbay RA, et al. Economic costs of diabetes in the U.S. in 2022. Diabetes Care. 2024;47(1):26-43. [
Link] [
DOI:10.2337/dci23-0085]
4. Bommer C, Sagalova V, Heesemann E, Manne-Goehler J, Atun R, Bärnighausen T, et al. Global and regional economic burden of diabetes in adults: Projections from 2015 to 2030. Diabetes Care. 2018;41(5):963-70. [
Link] [
DOI:10.2337/dc17-1962]
5. Williams R, Karuranga S, Malanda B, Saeedi P, Basit A, Besançon S, Bommer C, Esteghamati A, Ogurtsova K, Zhang P, Colagiuri S. Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res Clin Pract. 2020;162:108072. [
Link] [
DOI:10.1016/j.diabres.2020.108072]
6. Joshi RD, Dhakal CK. Predicting type 2 diabetes using logistic regression and SMOTE. Int J Environ Res Public Health. 2021;18(14):7346. [
Link] [
DOI:10.3390/ijerph18147346]
7. Van Buuren S, Groothuis-Oudshoorn K. Mice: Multivariate imputation by chained equations in R. J Stat Softw. 2011;45(3):1-67. [
Link] [
DOI:10.18637/jss.v045.i03]
8. Yeo IK, Johnson RA. A new family of power transformations to improve normality or symmetry. Biometrika. 2000;87(4):954-9. [
Link] [
DOI:10.1093/biomet/87.4.954]
9. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321-57. [
Link] [
DOI:10.1613/jair.953]
10. Fernández A, García S, Herrera F, Chawla NV. SMOTE for learning from imbalanced data: Progress and challenges. J Artif Intell Res. 2018;61:863-905. [
Link] [
DOI:10.1613/jair.1.11192]
11. Alghamdi M, Al-Mallah M, Keteyian S, Brawner C, Ehrman J, Sakr S. Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford Exercise Testing (FIT) project. PLoS One. 2017;12(7):e0179805. [
Link] [
DOI:10.1371/journal.pone.0179805]
12. Pudjihartono N, Fadason T, Kempa-Liehr AW, O'Sullivan JM. A review of feature selection methods for machine learning-based disease risk prediction. Front Bioinform. 2022;2:927312. [
Link] [
DOI:10.3389/fbinf.2022.927312]
13. Vergara JR, Estévez PA. A review of feature selection methods based on mutual information. Neural Comput Appl. 2014;24:175-86. [
Link] [
DOI:10.1007/s00521-013-1368-0]
14. Verleysen M, Rossi F, Francois D. Advances in feature selection with mutual information. Similarity Based Clust. 2009;50(3):670-84. [
Link] [
DOI:10.1007/978-3-642-01805-3_4]
15. Yki-Järvinen H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol. 2014;2(11):901-10. [
Link] [
DOI:10.1016/S2213-8587(14)70032-4]
16. Byrne CD, Targher G. NAFLD: A multisystem disease. J Hepatol. 2015;62(1 Suppl):S47-64. [
Link] [
DOI:10.1016/j.jhep.2014.12.012]
17. Lugner M, Rawshani A, Helleryd E, Eliasson B. Identifying top ten predictors of type 2 diabetes through machine learning analysis of UK Biobank data. Sci Rep. 2024;14(1):2102. [
Link] [
DOI:10.1038/s41598-024-52023-5]
18. Li X, Ding F, Zhang L, Zhao S, Hu Z, Ma Z, et al. Interpretable machine learning method to predict the risk of pre-diabetes using a national-wide cross-sectional data: Evidence from CHNSt. BMC Public Health. 2025;25:1145. [
Link] [
DOI:10.1186/s12889-025-22419-7]
19. Liu Q, Gong C, Geng Y, You J. Elevated alanine transaminase is nonlinearly associated with in-hospital death in ICU-admitted diabetic ketoacidosis patients. Diabetes Res Clin Pract. 2023;197:110555. [
Link] [
DOI:10.1016/j.diabres.2023.110555]
20. Upadhyay S, Gupta YK. Development of Web-based Novel Machine Learning Model Using Boosting Techniques for Early Prediction of Diabetes in Indian Adults. In2023 12th International Conference on System Modeling & Advancement in Research Trends (SMART). 2023 Dec 22. 592-602. IEEE. [
Link] [
DOI:10.1109/SMART59791.2023.10428549]
21. Patil R, Patil A, Janrao S, Bankar S, Shah K. A Framework for Prediction of Type II Diabetes through Ensemble Stacking Model. J Electron Electromed Engn Med Inform. 2024 Sep 16;6(4):459-66.. [
Link] [
DOI:10.35882/jeeemi.v6i4.497]
22. Nadesh RK, Arivuselvan K. Type 2: diabetes mellitus prediction using deep neural networks classifier. Int J Cogn Comput Eng. 2020;1:55-61.. [
Link] [
DOI:10.1016/j.ijcce.2020.10.002]
23. Healy GN, Matthews CE, Dunstan DW, Winkler EA, Owen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003-06. Eur Heart J. 2011;32(5):590-7. [
Link] [
DOI:10.1093/eurheartj/ehq451]
24. Katzmarzyk PT, Church TS, Craig CL, Bouchard C. Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med Sci Sports Exerc. 2009;41(5):998-1005. [
Link] [
DOI:10.1249/MSS.0b013e3181930355]
25. Mohtasham F, Pourhoseingholi MA, Hashemi Nazari SS, Kavousi K, Zali MR. Comparative analysis of feature selection techniques for COVID-19 dataset. Sci Rep. 2024;14:18627. [
Link] [
DOI:10.1038/s41598-024-69209-6]
26. Upadhyay S, Gupta YK. Enhancing Early Diagnosis of Type II Diabetes through Feature Selection and Hybrid Metaheuristic Optimization Techniques. Open Bioinform J. 2025;18(1). [
Link] [
DOI:10.2174/0118750362382139250502100340]